什么植物| 小脚趾麻木是什么原因| 月经量多吃什么药调理| 梦见屎是什么预兆| 昀字五行属什么| 结石什么东西不能吃| 心脏疼是什么病| 番茄什么时候种植| 杏黄是什么颜色| 为什么会有痣| 精华液是什么| 左边头疼是什么原因| 喉咙疼挂什么科| 油皮适合用什么护肤品| 牙龈疼是什么原因| 荷叶搭配什么一起喝减肥效果好| 可爱的动物是什么生肖| 王八是什么字| 洋葱与什么食物相克| 醋加小苏打有什么作用| 肾炎的饮食应注意什么| 什么叫美尼尔综合症| dollars是什么意思| 铮铮是什么意思| 威海的海是什么海| 血瘀吃什么药| 什么地游戏| 胃疼想吐是什么原因| 全身酸痛失眠什么原因| 冷面是什么面做的| 鹅厂是什么意思| 咳嗽绿痰是什么原因| 碳素墨水用什么能洗掉| 说风就是雨什么意思| 什么东西能补肾壮阳| 两个吉念什么| soe咖啡是什么意思| 千张炒什么好吃| 肝郁症是什么病| 智齿是什么原因引起的| 汆水是什么意思| 枳是什么意思| sds是什么意思| 为什么发动文化大革命| 礼部尚书是什么官| 牙齿痛挂什么科| 胃糜烂和胃溃疡有什么区别| 一月2日是什么星座| 禁欲系是什么意思| 乳腺小叶增生是什么意思| 气血不足吃什么东西| 云为什么不会掉下来| 三途苦是指的什么| 田野是什么意思| 用酒擦身体有什么好处| 情人总分分合合是什么歌| 鼓刹和碟刹有什么区别| pad是什么| 什么是肌酐| 前置胎盘是什么原因引起的| 什么的坐着| 湿温病是什么症状| 什么叫更年期| 什么医院才是正规医院| 农村什么赚钱| 胎位lop是什么意思| 什么叫环比| 杏黄是什么颜色| 十月三十号什么星座| 口角炎吃什么药| 乳腺彩超什么时候做最准确| 96年是什么年| 大便很细是什么原因| 止步不前什么意思| 胃反流有什么症状| 一什么尿| 喝什么泡水降血压最好| 乐捐是什么意思| 男性尿道出血什么原因| 蚝油是用什么做的| 打豆浆用什么豆子| 青春痘长什么样| 中午吃什么饭家常菜| 什么水果是碱性的| 两败俱伤是什么意思| 珍珠母贝是什么东西| efg是什么意思| 五行属木缺什么| 血液为什么是红色| 陶土样大便见于什么病| 过敏性结膜炎用什么眼药水最好| 白细胞高有什么危害| 大千世界什么意思| 大作是什么意思| 舌头尖有小红点这是什么症状| 浅黄色是什么颜色| 送护士女朋友什么礼物| 什么是宫外孕| 荆芥的别名叫什么| 炎性肉芽肿是什么意思| 左眉毛跳是什么预兆| 天高云淡是什么季节| 困是什么原因| 天天喝牛奶有什么好处| 葵水是什么意思| 乙基麦芽酚是什么| 康妇炎胶囊主治什么| 月经老提前是什么原因| 什么的脸庞| 红光对皮肤有什么作用| acne是什么意思| 3t是什么意思| sf什么意思| 彩金和黄金有什么区别| 什么是氙气| 马齿苋能治什么病| 地势是什么意思| 手筋痛是什么原因| 白色病变是什么病| 遗精是什么意思| pnh是什么病的简称| 女大一抱金鸡是什么意思| 流脑是什么病| 尿酸高能喝什么酒| 驳什么意思| 头顶不舒服是什么原因| 切糕为什么这么贵| 智利说什么语言| 前列腺液是什么| ein是什么牌子| 什么颜色最显白| 沙和尚的武器叫什么| 韶字五行属什么| 血小板高是什么原因| 每逢佳节倍思亲的上一句是什么| 官杀混杂是什么意思| 夏至未至是什么意思| 孕妇梦见猪是什么意思| 菟丝子有什么功效| 嘈杂的意思是什么| 每天尿都是黄的是什么原因| 决堤是什么意思| 甲状腺病变是什么意思| 脱线是什么意思| 感康是什么药| 静五行属什么| 二尾子什么意思| 什么样才是包皮| 吃什么吐什么| 感性什么意思| 乳腺增生是什么意思| 肺大泡是什么意思| 朱元璋是什么生肖| 孤魂野鬼是什么生肖| 女人下身干燥无水是什么原因| 住院医师是什么职称| 夏天喝什么茶最好| 梦见老公出轨预示什么| 奶黄包的馅是什么做的| 分数是什么| 一什么水塔| 世界上最多笔画的字是什么字| 食是什么生肖| 电压高是什么原因造成| 镜花水月是什么意思| 耳朵听不清楚是什么原因| 心直口快是什么意思| 男生做爱什么感觉| 阉割是什么意思| 什么的感受| 姑姑的孩子叫什么| 杭州市市长什么级别| 囊肿是什么| 小龙虾不能和什么一起吃| 阴差阳错是什么意思| 早泄是什么原因| 腋窝出汗是什么原因| 几天不大便是什么原因| 什么汤好喝又简单| 猫咪的胡子有什么作用| cj是什么意思| yonex是什么品牌| 7点是什么时辰| 扁桃体经常发炎是什么原因| 囤货是什么意思| 小孩走路迟是什么原因| 哥哥的哥哥叫什么| pre是什么的缩写| 草代表什么生肖| 红斑狼疮是什么引起的| 上门女婿什么意思| hpv检查前需要注意什么| 训练有素是什么意思| 火眼金睛是什么生肖| 余沧海为什么是两个人| 汇总压缩是什么意思| 腰封是什么| 势均力敌是什么意思| 发达国家的标准是什么| 青汁是什么| 和可以组什么词| 湿气重吃什么药好| 血脂稠吃什么药最好| 月经下不来吃什么药| 眩晕症是什么原因| edm是什么意思| 12月8号什么星座| 依从性是什么意思| 木林森属于什么档次| 潮吹是什么感觉| 啫喱是什么| 粉的像什么| 平菇不能和什么一起吃| 肛瘘是什么症状表现| 牵牛花是什么颜色| 大便颗粒状是什么原因造成的| 酉是什么意思| 嘴角上扬是什么意思| 霉菌阴性是什么意思| 甲状腺囊肿不能吃什么| 白血病有什么征兆| 鸡眼膏为什么越贴越疼| 放疗跟化疗有什么区别| 入园体检都检查什么| 吃饺子是什么节日| 什么水果补气血| 高压氧治疗有什么作用| 阴吹是什么| 下巴长痘痘什么原因| 膝关节弹响是什么原因| 谵妄是什么意思| 鲍鱼什么意思| 头顶秃了一小块是什么原因怎么办| eca是什么意思| 同房什么感觉| hf是什么| 茄子和什么相克| 柔五行属什么| 胰腺不舒服是什么症状| 83年属什么生肖| 钾低是什么原因引起的| 俺是什么意思| 脾功能亢进是什么意思| 羲字五行属什么| 珊瑚色是什么颜色| 发烧骨头疼是什么原因| stomach什么意思| 处女座的幸运色是什么颜色| 痛经吃什么药| 昕字取名什么寓意| 美的是什么牌子| 姑爷是什么意思| 羟苯乙酯是什么| 碘伏有什么作用| 倒吊人是什么意思| 夏天都有什么花| 打黄体酮针有什么副作用| 情绪不稳定易怒烦躁是什么症状| 甲沟炎涂抹什么药膏最有效| 闯空门什么意思| 肝回声细密是什么意思| 弯弯的月儿像什么| 维生素d有什么作用| 10月4号什么星座| 百度Jump to content

【河北好人】孙杰:用言行诠释城管人的最善美

From Wikiversity
百度 而台商和网友却不买账,更有台商今日登报除表态反“台独”,支持“九二共识”,“两岸一中”外,也为发言被误解是支持民进党两岸政策,“伤害两岸同胞的情感”,公开道歉。

A well-behaved function can be expanded into a power series. This means that for all non-negative integers there are real numbers such that

Let us calculate the first four derivatives using :

Setting equal to zero, we obtain

Let us write for the -th derivative of  We also write — think of as the "zeroth derivative" of  We thus arrive at the general result where the factorial  is defined as equal to 1 for and and as the product of all natural numbers for Expressing the coefficients in terms of the derivatives of at we obtain

This is the Taylor series for 

A remarkable result: if you know the value of a well-behaved function and the values of all of its derivatives at the single point then you know at all points  Besides, there is nothing special about so is also determined by its value and the values of its derivatives at any other point :

Examples

[edit | edit source]

cos(x)

[edit | edit source]



Some basic checking:

arctan(x)

[edit | edit source]

. See .

Second derivative y″

[edit | edit source]

Third derivative y111

[edit | edit source]

(continued)

[edit | edit source]

If you continue to calculate derivatives, you will produce the following sequence:


Some basic checking:

Also,

Show that

or that

If abs

Figure 1: Graph of Taylor series representing for close to

In the diagram to the right, is the Taylor series representing for close to

In the box above the proof that is an accurate representation of is valid for abs

When abs the diagram vividly illustrates that the series rapidly diverges.

To be accurate, the line should be rad or meaning radians. In theoretical work a value such as is understood to be radians or meaning degrees.

In practice

[edit | edit source]

The expansion of above is theoretically valid for However, if is close to the calculation of will take forever.

This section uses so that is small enough to make time of calculation acceptable.


Let To calculate

Using the half-angle formula

calculate and


This value was chosen for because is close to For approx.

If the code below is accurate to places of decimals.


This section uses the whole sequence of derivatives:

where

where

where

where and so on.


Using

then and:

Figure 1: Graph of Taylor series representing for close to
close to
rad.
y = 0.6414085001079161195194563572
+(0.6420076723519613087221948458)(x-(0.7467354177837216717375001402))
+(-0.3077848130939266477182675970)(x-0.7467354177837216717375001402)^2
+(0.05934881813852229894809158807)(x-0.7467354177837216717375001402)^3
+(0.05612149216561873709345633871)(x-0.7467354177837216717375001402)^4
+(-0.0659097533448882821311588572)(x-0.7467354177837216717375001402)^5
+(0.02864269115336634046783964776)(x-0.7467354177837216717375001402)^6
+(0.006684824489389227404750195292)(x-0.7467354177837216717375001402)^7
+(-0.01939996954693863883077829889)(x-0.7467354177837216717375001402)^8
+(0.01319629210955273736079467214)(x-0.7467354177837216717375001402)^9
+(-0.001423635337528918097834676738)(x-0.7467354177837216717375001402)^10
+(-0.005690817314508170664127596721)(x-0.7467354177837216717375001402)^11
+(0.005763416294060825609852171147)(x-0.7467354177837216717375001402)^12
+(-0.002009530403041012685757678258)(x-0.7467354177837216717375001402)^13
+(-0.001382413103546475118963526286)(x-0.7467354177837216717375001402)^14
+(0.002355235379425975362106687309)(x-0.7467354177837216717375001402)^15
+(-0.001340525935442931206538139095)(x-0.7467354177837216717375001402)^16
+(-0.0001244720120416846251034920203)(x-0.7467354177837216717375001402)^17
+(0.0008777184853106580549638629701)(x-0.7467354177837216717375001402)^18
+(-0.0007257802485492202930793702930)(x-0.7467354177837216717375001402)^19
+(0.0001539460026510816727324277808)(x-0.7467354177837216717375001402)^20
+(0.0002810020934892180446689969911)(x-0.7467354177837216717375001402)^21
+(-0.0003470330774958963760466009045)(x-0.7467354177837216717375001402)^22
+(0.0001535570475871531716152621841)(x-0.7467354177837216717375001402)^23
+(0.00006313260945054237374661397478)(x-0.7467354177837216717375001402)^24
+(-0.0001488094986598041280906554962)(x-0.7467354177837216717375001402)^25
+(0.00009977993191704606200503722720)(x-0.7467354177837216717375001402)^26
+(-0.000003667561779685224841381874106)(x-0.7467354177837216717375001402)^27
+(-0.00005609286432922550484209657985)(x-0.7467354177837216717375001402)^28
+(0.00005412057738460028511566507574)(x-0.7467354177837216717375001402)^29
+(-0.00001655090242419904039018979491)(x-0.7467354177837216717375001402)^30
+(-0.00001714674178231985986067601799)(x-0.7467354177837216717375001402)^31
+(0.00002588855802866968641107644970)(x-0.7467354177837216717375001402)^32
+(-0.00001372909690493026279553133838)(x-0.7467354177837216717375001402)^33
+(-0.000002866406864208033772447118585)(x-0.7467354177837216717375001402)^34
+(0.00001098036048658105543109288040)(x-0.7467354177837216717375001402)^35
+(-0.000008497717911244361532280438636)(x-0.7467354177837216717375001402)^36
+(0.000001259146436001274560243296183)(x-0.7467354177837216717375001402)^37
+(0.000003992939704019955177003526706)(x-0.7467354177837216717375001402)^38
+(-0.000004497268683100848779169934291)(x-0.7467354177837216717375001402)^39
+(0.000001768945188244137235636524921)(x-0.7467354177837216717375001402)^40
+(0.000001091706749083768850937760502)(x-0.7467354177837216717375001402)^41
+(-0.000002103423912310375893571195410)(x-0.7467354177837216717375001402)^42
+(0.000001301617082996039555612971998)(x-0.7467354177837216717375001402)^43
+(6.937967909808721515382339295E-8)(x-0.7467354177837216717375001402)^44
+(-8.635525611989332402947366709E-7)(x-0.7467354177837216717375001402)^45
+(7.673857631132879175874596987E-7)(x-0.7467354177837216717375001402)^46
+(-1.893140553441536683377149770E-7)(x-0.7467354177837216717375001402)^47
+(-2.944033068289732156296704644E-7)(x-0.7467354177837216717375001402)^48
+(3.930991061512879804635643270E-7)(x-0.7467354177837216717375001402)^49
+(-1.879241426421737899718180888E-7)(x-0.7467354177837216717375001402)^50

A faster version
[edit | edit source]

The calculation of above is suitable as input to application grapher.

The following python code has precision set to If it is desired to calculate for one value of the following python code is much faster than the code supplied to grapher above.

python code
[edit | edit source]
data = '''
0.641408500107916119519456357419567
0.642007672351961308722194845349589
-0.307784813093926647718267596858344
0.0593488181385222989480915882567083
0.0561214921656187370934563384765525
-0.0659097533448882821311588570897649
0.0286426911533663404678396477942956
0.00668482448938922740475019519860028
-0.0193999695469386388307782988276083
0.0131962921095527373607946721380589
-0.00142363533752891809783467677853379
-0.00569081731450817066412759667853352
0.00576341629406082560985217113222417
-0.00200953040304101268575767827219472
-0.00138241310354647511896352626325379
0.00235523537942597536210668729668636
-0.00134052593544293120653813909608214
-0.000124472012041684625103492011289663
0.000877718485310658054963862962235904
-0.000725780248549220293079370291315901
0.000153946002651081672732427784261987
0.000281002093489218044668996986822804
-0.000347033077495896376046600902527326
0.000153557047587153171615262184995174
0.0000631326094505423737466139726989411
-0.000148809498659804128090655494778209
0.0000997799319170460620050372271284211
-0.00000366756177968522484138187499300975
-0.0000560928643292255048420965789718678
0.0000541205773846002851156650754617952
-0.0000165509024241990403901897952115479
-0.0000171467417823198598606760175136922
0.0000258885580286696864110764494276036
-0.0000137290969049302627955313384274982
-0.00000286640686420803377244711837064614
0.0000109803604865810554310928802164877
-0.00000849771791124436153228043859514619
0.00000125914643600127456024329626150593
0.00000399293970401995517700352660353714
-0.00000449726868310084877916993424187367
0.00000176894518824413723563652493847337
0.00000109170674908376885093776045369610
-0.00000210342391231037589357119537437086
0.00000130161708299603955561297199526169
6.93796790980872151538233731691180E-8
-8.63552561198933240294736649885292E-7
7.67385763113287917587459691270367E-7
-1.89314055344153668337714983394592E-7
-2.94403306828973215629670453652457E-7
3.93099106151287980463564320621599E-7
-1.87924142642173789971818089630347E-7
'''

from decimal import *
getcontext().prec=33

listOfMultipliers  = [ Decimal(v) for v in data.split() ]

def arctan (x) :
    x = Decimal(str(x))
    if 1.05 >= x >= 0.45 : pass
    else : print ('\narctan(x): input is outside recommended range.',end='')
    y = Decimal(0)
    x0 = Decimal('0.746735417783721671737500140715213') # tan36.75
    x_minus_x0 = x - x0
    X = Decimal(1)
    status = 1
    for p in range(0,51) :
        toBeAdded = listOfMultipliers[p] * X
        if abs(toBeAdded) < Decimal('1e-31') :
            status = 0
            break
        y += toBeAdded
        X *= x_minus_x0
    if status :
        print ('\narctan(x): count expired.', end='')
    str1 = '''
arctan({}) = {}, count = {}
'''.format(x,y,p)
    print (str1.rstrip())
    return y

x close to x0
[edit | edit source]
x = Decimal('0.75')
arctan(x)

arctan(0.75) = 0.643501108793284386802809228717315, count = 12

When is close to result is achieved with only 12 passes through loop.

Testing with known values
[edit | edit source]

Check results using known combinations of and

For and other exact values of see Exact Values for Common Angles.

π = "3.14159265358979323846264338327950288419716939937510582097494459230781"
π = Decimal(π)
rt3 = Decimal(3).sqrt()
rt5 = Decimal(5).sqrt()
rt15 = Decimal(15).sqrt()

tan27 = rt5 - 1 - (5 - 2*rt5).sqrt()

tan30 = 1/rt3

v1 = 2 - (2-rt3)*(3+rt5) ; v2 = 2+ (2*(5-rt5)).sqrt()
tan33 = v1*v2/4

tan36 = (5-2*rt5).sqrt()

v1 = (2-rt3)*(3-rt5)-2 ; v2 = 2 - (2*(5+rt5)).sqrt()
tan39 = v1*v2/4

tan42 = ( rt15 + rt3 - (10 + 2*rt5).sqrt() )/2

tan45 = Decimal(1)

values = (
    ( 9*π/60, tan27, 27),
    (10*π/60, tan30, 30),
    (11*π/60, tan33, 33),
    (12*π/60, tan36, 36),
    (13*π/60, tan39, 39),
    (14*π/60, tan42, 42),
    (   π/ 4, tan45, 45),
)

for value in values :
    angleInRadians, tan, angleInDegrees = value
    y = arctan(tan)
    print ('for', angleInDegrees, 'degrees, difference =',  angleInRadians-y)

arctan(0.509525449494428810513706911250666) = 0.471238898038468985769396507491970, count = 41
for 27 degrees, difference = -4.5E-32

arctan(0.577350269189625764509148780501958) = 0.523598775598298873077107230546614, count = 34
for 30 degrees, difference = -3.1E-32

arctan(0.649407593197510576982062911311432) = 0.575958653158128760384817953601229, count = 27
for 33 degrees, difference = 1.3E-32

arctan(0.726542528005360885895466757480614) = 0.628318530717958647692528676655896, count = 17
for 36 degrees, difference = 4E-33

arctan(0.809784033195007148036991374235772) = 0.680678408277788535000239399710521, count = 23
for 39 degrees, difference = 3.7E-32

arctan(0.90040404429783994512047720388537) = 0.733038285837618422307950122765236, count = 33
for 42 degrees, difference = -1.9E-32

arctan(1) = 0.785398163397448309615660845819846, count = 43
for 45 degrees, difference = 3.0E-32

[edit | edit source]
tan24 = ( (50+22*rt5).sqrt() - 3*rt3 - rt15 ) / 2
tan46_5 = Decimal('1.05378012528096218058753672331544') # tan(46.5) 

values = (
    (24*π/180,   tan24,   24),
    (93*π/360, tan46_5, 46.5),
)

for value in values :
    angleInRadians, tan, angleInDegrees = value
    y = arctan(tan)
    print ('for x =', float(tan), 'difference =',  angleInRadians-y)

arctan(x): input is outside recommended range.
arctan(0.44522868530853616392236703064567) = 0.418879020478639098461685784437249, count = 47
for x = 0.44522868530853615 difference = 1.8E-32

arctan(x): input is outside recommended range.
arctan(1.05378012528096218058753672331544) = 0.811578102177363253269516207347250, count = 48
for x = 1.0537801252809622 difference = -4.4E-32

For the above calculation of is accurate to more than 30 places of decimals.

[edit | edit source]

If input is outside recommended limits, this does not necessarily mean that result is invalid.

If result is accurate to precision of python floats, 15 places of decimals.

arcsin(x)

[edit | edit source]

Simple differential equations eliminate the square root and make calculations so much easier.

Let

Then where and


Differentiating both sides:

Let

Then


Differentiating both sides:

Let

Then


When Calculation of more derivatives yields:

and so on.




As programming algorithm:

[edit | edit source]


As implemented in Python:

[edit | edit source]
from decimal import * # Default precision is 28.

π = ("3.14159265358979323846264338327950288419716939937510582097494459230781")
π = Decimal(π)

x = Decimal(2).sqrt()/2 # Expecting result of π/4

xSQ = x*x
X = x*xSQ

top = Decimal(1)
bottom = Decimal(2)

bottom1 = bottom*3
sum = x + X*top / bottom1

status = 1
for n in range(5,200,2) :
    X = X*xSQ
    top = top*(n-2)
    bottom = bottom*(n-1)
    bottom1 = bottom*n
    added = X*top/bottom1
    if (added < 1e-29) :
        status = 0
        break
    sum += added

if status :
    print ('error. count expired.')
else :
    print (x, sum==π/4, n)
0.707106781186547524400844362 True 171

In practice

[edit | edit source]

If is close to the calculation of will take forever.


If you limit to then and each term is guaranteed to be less than half the preceding term.


If let

Then

Integral of expression

[edit | edit source]

According to the reference "this expression cannot be integrated..." However, if we convert the expression to a Taylor series, the integral of the series is quite easily calculated.

Let

When and the following sequence can be produced.

where

and so on.

Taylor series of for close to

where

For python code produces the following:

c02 = -0.6931471805599453094172321215
c04 = 0.2402265069591007123335512632
c06 = -0.05550410866482157995314226378
c08 = 0.009618129107628477161979071575
c10 = -0.001333355814642844342341222199
c12 = 0.0001540353039338160995443709734
c14 = -0.00001525273380405984028002543902
c16 = 0.000001321548679014430948840375823
c18 = -1.017808600923969972749000760E-7
c20 = 7.054911620801123329875392184E-9
c22 = -4.445538271870811497596408561E-10
c24 = 2.567843599348820514199480240E-11
c26 = -1.369148885390412888089195400E-12
c28 = 6.778726354822545633449104318E-14
c30 = -3.132436707088428621634944443E-15
c32 = 1.357024794875514719311296624E-16
c34 = -5.533046532458242043485546100E-18
c36 = 2.130675335489117996020398479E-19
c38 = -7.773008428857356419088997166E-21
c40 = 2.693919438465583416972861154E-22
c42 = -8.891822206800239171648619811E-24

For close to or close to the Taylor series is a quite accurate representation of the original expression. When abs the abs(maximum difference) between expression and Taylor series is

For greater accuracy, greater precision may be specified in python or more terms after may be added.

The integral

where

Figure 1: Curves of and where is Taylor series representing for close to .

In figure to right, separating from to illustrate shapes of curves.

The correct value of .

When and .

To 24 places of decimals _____.

Figure 1: Curves of and where is integral of and represents integral of for close to .
In this example, constant of integration

If it were important to calculate the area under from to returns accurate to about 26 places of decimals.

sin(x) using (x - x0)

[edit | edit source]

Let

Let

Then

where is the Taylor series representing for values of close to or

If , then containing powers of through is sufficient to keep the error to

[edit | edit source]

Almost a sine curve

[edit | edit source]
Figure 1: Graph of representing for close to .

Graph to right was produced by Grapher on a Mac.

A python script produced the following data:

( (2^(0.5))/2 )(
 1  +(x-.785398163397448)

 -((x-.785398163397448)^2)/2
 -((x-.785398163397448)^3)/(2(3))

 +((x-.785398163397448)^4)/(24)
 +((x-.785398163397448)^5)/(120)

 -((x-.785398163397448)^6)/(720)
 -((x-.785398163397448)^7)/(5040)

 +((x-.785398163397448)^8)/(40320)
 +((x-.785398163397448)^9)/(362880)

 -((x-.785398163397448)^10)/(3628800)
 -((x-.785398163397448)^11)/(39916800)

 +((x-.785398163397448)^12)/(479001600)
 +((x-.785398163397448)^13)/(6227020800)

 -((x-.785398163397448)^14)/(87178291200)
 -((x-.785398163397448)^15)/(1307674368000)

 +((x-.785398163397448)^16)/(20922789888000)
 +((x-.785398163397448)^17)/(355687428096000)

 -((x-.785398163397448)^18)/(6402373705728000)
 -((x-.785398163397448)^19)/(121645100408832000)

 +((x-.785398163397448)^20)/(2432902008176640000)
 +((x-.785398163397448)^21)/(51090942171709440000)

 -((x-.785398163397448)^22)/(1124000727777607680000)
 -((x-.785398163397448)^23)/(25852016738884976640000)

 +((x-.785398163397448)^24)/(620448401733239439360000)
 +((x-.785398163397448)^25)/(15511210043330985984000000)

 -((x-.785398163397448)^26)/(403291461126605635584000000)
 -((x-.785398163397448)^27)/(10888869450418352160768000000)

 +((x-.785398163397448)^28)/(304888344611713860501504000000)
 +((x-.785398163397448)^29)/(8841761993739701954543616000000)
)

I highlighted the data, copied it with command C and pasted it into the input area of Grapher. Well done! Grapher.

Integral of 1/x

[edit | edit source]

The Taylor series for for close to is:

The integral of this series is:

The integral of

Therefore but what is the value of

Without when should be

Therefore, for close to

where

But what is the value of

Without when should be

Therefore or

For close to

where

Figure 1: Graph of representing for close to .
y = 0.693147180559945
+ ((1/(2^1))/1)(x - 2)^1
- ((1/(2^2))/2)(x - 2)^2
+ ((1/(2^3))/3)(x - 2)^3
- ((1/(2^4))/4)(x - 2)^4
+ ((1/(2^5))/5)(x - 2)^5
- ((1/(2^6))/6)(x - 2)^6
+ ((1/(2^7))/7)(x - 2)^7
...........................
...........................
- ((1/(2^42))/42)(x - 2)^42
+ ((1/(2^43))/43)(x - 2)^43
- ((1/(2^44))/44)(x - 2)^44
+ ((1/(2^45))/45)(x - 2)^45
- ((1/(2^46))/46)(x - 2)^46
+ ((1/(2^47))/47)(x - 2)^47
- ((1/(2^48))/48)(x - 2)^48
+ ((1/(2^49))/49)(x - 2)^49

Generally, for close to

Calculating ln(x)

[edit | edit source]

This section presents a system for calculating for knowing only that

# python code
L1 = [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.4, 2.6, 2.8, 
    3.0, 3.3, 3.6, 3.9, 4.2, 4.6, 5.0, 5.5, 6.0, 6.6, 7.2, 7.9, 8.6, 9.3, 10.0]

where L1 is a list containing values of in which each value after the first is % more than the preceding value.

# python code
from decimal import *
getcontext().prec=53 # Preparing for values containing 50 places of decimals.
almostZero = Decimal('1e-' + str( getcontext().prec ))

L1 = [ Decimal(str(v)) for v in L1 ]

def ln_x (x, x0, C=0) :
    '''
    return ln(x) for x close to x0.
    ln_x_ = ln_x (x, x0, C) 
    C is the constant of integration. Usually C = ln(x0).
    '''
    x, x0, C = [ Decimal(str(v)) for v in (x,x0,C) ]
    x_minus_x0 = x-x0;
#    print ('x,x0,x_minus_x0 =',x,x0,x_minus_x0)
    sum = 0
    progressiveValue = 1
    status = 1 ; limit = 4*getcontext().prec
    multiplier = x_minus_x0/x0
    for p in range (1, limit, 2) :
        progressiveValue *= multiplier
        added = progressiveValue / p
        sum += added

        progressiveValue *= multiplier
        added = progressiveValue / (p+1)

        if (abs(added) < almostZero) :
            status = 0
            break
        sum -= added
    if (status) :
        print ('ln_x error: count expired, p =',p)
        exit (95)
    return sum+C

The performance of the above code is better than logarithmic to base . This means, for example, if contains 60 significant decimal digits, the above code produces a result with fewer than 30 passes through the loop because each iteration of the lop performs two operations.

L1 is designed so that multiplier is always When is very close to time to calculate is greatly reduced.

Figure 1: Graph of representing for close to .
When value the series diverges.
In this case, when
y = ln(7.9)
+ ((1/((7.9)^(1)))/(1))((x - 7.9)^(1))
- ((1/((7.9)^(2)))/(2))((x - 7.9)^(2))
+ ((1/((7.9)^(3)))/(3))((x - 7.9)^(3))
- ((1/((7.9)^(4)))/(4))((x - 7.9)^(4))
+ ((1/((7.9)^(5)))/(5))((x - 7.9)^(5))
- ((1/((7.9)^(6)))/(6))((x - 7.9)^(6))
+ ((1/((7.9)^(7)))/(7))((x - 7.9)^(7))
- ((1/((7.9)^(8)))/(8))((x - 7.9)^(8))
+ ((1/((7.9)^(9)))/(9))((x - 7.9)^(9))
.....................
.....................
- ((1/((7.9)^(22)))/(22))((x - 7.9)^(22))
+ ((1/((7.9)^(23)))/(23))((x - 7.9)^(23))
- ((1/((7.9)^(24)))/(24))((x - 7.9)^(24))
+ ((1/((7.9)^(25)))/(25))((x - 7.9)^(25))
- ((1/((7.9)^(26)))/(26))((x - 7.9)^(26))
+ ((1/((7.9)^(27)))/(27))((x - 7.9)^(27))
- ((1/((7.9)^(28)))/(28))((x - 7.9)^(28))
+ ((1/((7.9)^(29)))/(29))((x - 7.9)^(29))

The next piece of code progressively calculates and puts the calculated values in dictionary dict2.

dict2 = dict()
dict2[Decimal('1.0')] = Decimal(0)

for p in range(1, len(L1)) :
    x = L1[p]
    x0 = L1[p-1]
    C = dict2[x0]
#    print ('L1[{}]={}'.format(p,L1[p]))
    ln = ln_x (x, x0, C)
    dict2[x] = ln

print ('dict2 = {')
for x0 in dict2 :
    print ("Decimal('{}'):  +Decimal('{}'),".format( (' '+str(x0))[-4:], dict2[x0]) )
print ('}')
dict2 = {
Decimal(' 1.0'):  +Decimal('0'),
Decimal(' 1.1'):  +Decimal('0.095310179804324860043952123280765092220605365308644199'),
Decimal(' 1.2'):  +Decimal('0.18232155679395462621171802515451463319738933791448698'),
Decimal(' 1.3'):  +Decimal('0.26236426446749105203549598688095439720416645613143414'),
Decimal(' 1.4'):  +Decimal('0.33647223662121293050459341021699209011148337531334347'),
Decimal(' 1.5'):  +Decimal('0.40546510810816438197801311546434913657199042346249420'),
Decimal(' 1.6'):  +Decimal('0.47000362924573555365093703114834206470089904881224805'),
Decimal(' 1.7'):  +Decimal('0.53062825106217039623154316318876232798710152395697182'),
Decimal(' 1.8'):  +Decimal('0.58778666490211900818973114061886376976937976137698120'),
Decimal(' 1.9'):  +Decimal('0.64185388617239477599103597720348932963627777267035586'),
Decimal(' 2.0'):  +Decimal('0.69314718055994530941723212145817656807550013436025527'),
Decimal(' 2.2'):  +Decimal('0.78845736036427016946118424473894166029610549966889947'),
Decimal(' 2.4'):  +Decimal('0.87546873735389993562895014661269120127288947227474225'),
Decimal(' 2.6'):  +Decimal('0.95551144502743636145272810833913096527966659049168941'),
Decimal(' 2.8'):  +Decimal('1.0296194171811582399218255316751686581869835096735987'),
Decimal(' 3.0'):  +Decimal('1.0986122886681096913952452369225257046474905578227494'),
Decimal(' 3.3'):  +Decimal('1.1939224684724345514391973602032907968680959231313936'),
Decimal(' 3.6'):  +Decimal('1.2809338454620643176069632620770403378448798957372364'),
Decimal(' 3.9'):  +Decimal('1.3609765531356007434307412238034801018516570139541836'),
Decimal(' 4.2'):  +Decimal('1.4350845252893226218998386471395177947589739331360929'),
Decimal(' 4.6'):  +Decimal('1.5260563034950493162059934985840084789167789605719180'),
Decimal(' 5.0'):  +Decimal('1.6094379124341003746007593332261876395256013542685177'),
Decimal(' 5.5'):  +Decimal('1.7047480922384252346447114565069527317462067195771619'),
Decimal(' 6.0'):  +Decimal('1.7917594692280550008124773583807022727229906921830047'),
Decimal(' 6.6'):  +Decimal('1.8870696490323798608564294816614673649435960574916489'),
Decimal(' 7.2'):  +Decimal('1.9740810260220096270241953835352169059203800300974917'),
Decimal(' 7.9'):  +Decimal('2.0668627594729758101549540867970467145724397357938367'),
Decimal(' 8.6'):  +Decimal('2.1517622032594620488720831801196593960335348306130377'),
Decimal(' 9.3'):  +Decimal('2.2300144001592102533064181067805187074963279996745685'),
Decimal('10.0'):  +Decimal('2.3025850929940456840179914546843642076011014886287730'),
}

A quick check:

ln(2.2) - (ln(1.1) + ln(2.0)) = 0E-50
ln(2.4) - (ln(1.2) + ln(2.0)) = 0E-50
ln(2.6) - (ln(1.3) + ln(2.0)) = 0E-50
ln(2.8) - (ln(1.4) + ln(2.0)) = 0E-50
ln(3.0) - (ln(1.5) + ln(2.0)) = -0E-50
ln(3.3) - (ln(1.1) + ln(3.0)) = 0E-50
ln(3.6) - (ln(1.2) + ln(3.0)) = 0E-50
ln(3.6) - (ln(1.8) + ln(2.0)) = -0E-50
ln(3.9) - (ln(1.3) + ln(3.0)) = 0E-50
ln(4.2) - (ln(1.4) + ln(3.0)) = 0E-50
ln(5.5) - (ln(1.1) + ln(5.0)) = 0E-50
ln(6.0) - (ln(1.2) + ln(5.0)) = 0E-50
ln(6.0) - (ln(2.0) + ln(3.0)) = 0E-50
ln(6.6) - (ln(1.1) + ln(6.0)) = 0E-50
ln(6.6) - (ln(2.2) + ln(3.0)) = 0E-50
ln(6.6) - (ln(3.3) + ln(2.0)) = 0E-50
ln(7.2) - (ln(1.2) + ln(6.0)) = 0E-50
ln(7.2) - (ln(2.4) + ln(3.0)) = 0E-50
ln(10.0) - (ln(5.0) + ln(2.0)) = 0E-50

Put the data from dict2 into 2 tuples Tx0, Tln_x0

Tx0 = tuple(L1)
Tln_x0 = tuple([ dict2[v] for v in Tx0 ])

Calculate the decision points.

L1 = []
for p in range (0, len(Tx0)-1) :
    a,b = Tx0[p], Tx0[p+1]
    dp = 2*a*b/(a+b)
    L1 += [ dp ]
Tdp = tuple(L1)

Display the three tuples.

for T in ('Tx0', 'Tln_x0', 'Tdp') :
    t = eval(T)
    print (T, '= (')
    for v in t :
        print ("""+Decimal('{}'),""".format(v))
    print (')')
    print ()

Previous code was used to produce three tuples. Operational code follows:


Values of

Tx0 = ( Decimal('1'), Decimal('1.1'), Decimal('1.2'), Decimal('1.3'), Decimal('1.4'), Decimal('1.5'), Decimal('1.6'), Decimal('1.7'), Decimal('1.8'), Decimal('1.9'), Decimal('2.0'), Decimal('2.2'), Decimal('2.4'), Decimal('2.6'), Decimal('2.8'), Decimal('3.0'), Decimal('3.3'), Decimal('3.6'), Decimal('3.9'), Decimal('4.2'), Decimal('4.6'), Decimal('5.0'), Decimal('5.5'), Decimal('6.0'), Decimal('6.6'), Decimal('7.2'), Decimal('7.9'), Decimal('8.6'), Decimal('9.3'), Decimal('10.0'), )


Values of

Tln_x0 = ( +Decimal('0'), +Decimal('0.095310179804324860043952123280765092220605365308644199'), +Decimal('0.18232155679395462621171802515451463319738933791448698'), +Decimal('0.26236426446749105203549598688095439720416645613143414'), +Decimal('0.33647223662121293050459341021699209011148337531334347'), +Decimal('0.40546510810816438197801311546434913657199042346249420'), +Decimal('0.47000362924573555365093703114834206470089904881224805'), +Decimal('0.53062825106217039623154316318876232798710152395697182'), +Decimal('0.58778666490211900818973114061886376976937976137698120'), +Decimal('0.64185388617239477599103597720348932963627777267035586'), +Decimal('0.69314718055994530941723212145817656807550013436025527'), +Decimal('0.78845736036427016946118424473894166029610549966889947'), +Decimal('0.87546873735389993562895014661269120127288947227474225'), +Decimal('0.95551144502743636145272810833913096527966659049168941'), +Decimal('1.0296194171811582399218255316751686581869835096735987'), +Decimal('1.0986122886681096913952452369225257046474905578227494'), +Decimal('1.1939224684724345514391973602032907968680959231313936'), +Decimal('1.2809338454620643176069632620770403378448798957372364'), +Decimal('1.3609765531356007434307412238034801018516570139541836'), +Decimal('1.4350845252893226218998386471395177947589739331360929'), +Decimal('1.5260563034950493162059934985840084789167789605719180'), +Decimal('1.6094379124341003746007593332261876395256013542685177'), +Decimal('1.7047480922384252346447114565069527317462067195771619'), +Decimal('1.7917594692280550008124773583807022727229906921830047'), +Decimal('1.8870696490323798608564294816614673649435960574916489'), +Decimal('1.9740810260220096270241953835352169059203800300974917'), +Decimal('2.0668627594729758101549540867970467145724397357938367'), +Decimal('2.1517622032594620488720831801196593960335348306130377'), +Decimal('2.2300144001592102533064181067805187074963279996745685'), +Decimal('2.3025850929940456840179914546843642076011014886287730'), )


Decision points:

Tdp = ( +Decimal('1.0476190476190476190476190476190476190476190476190476'), +Decimal('1.1478260869565217391304347826086956521739130434782609'), +Decimal('1.248'), +Decimal('1.3481481481481481481481481481481481481481481481481481'), +Decimal('1.4482758620689655172413793103448275862068965517241379'), +Decimal('1.5483870967741935483870967741935483870967741935483871'), +Decimal('1.6484848484848484848484848484848484848484848484848485'), +Decimal('1.7485714285714285714285714285714285714285714285714286'), +Decimal('1.8486486486486486486486486486486486486486486486486486'), +Decimal('1.9487179487179487179487179487179487179487179487179487'), +Decimal('2.0952380952380952380952380952380952380952380952380952'), +Decimal('2.2956521739130434782608695652173913043478260869565217'), +Decimal('2.496'), +Decimal('2.6962962962962962962962962962962962962962962962962963'), +Decimal('2.8965517241379310344827586206896551724137931034482759'), +Decimal('3.1428571428571428571428571428571428571428571428571429'), +Decimal('3.4434782608695652173913043478260869565217391304347826'), +Decimal('3.744'), +Decimal('4.0444444444444444444444444444444444444444444444444444'), +Decimal('4.3909090909090909090909090909090909090909090909090909'), +Decimal('4.7916666666666666666666666666666666666666666666666667'), +Decimal('5.2380952380952380952380952380952380952380952380952381'), +Decimal('5.7391304347826086956521739130434782608695652173913043'), +Decimal('6.2857142857142857142857142857142857142857142857142857'), +Decimal('6.8869565217391304347826086956521739130434782608695652'), +Decimal('7.5337748344370860927152317880794701986754966887417219'), +Decimal('8.2351515151515151515151515151515151515151515151515152'), +Decimal('8.9363128491620111731843575418994413407821229050279330'), +Decimal('9.6373056994818652849740932642487046632124352331606218'), )

At each decision point is assigned to the next low value or the next high value of For example, if is between the decision point is This means that the ratio and the maximum value of abs

During creation of Tln_x0 the maximum value of During normal operations after creation of Tln_x0, maximum value of abs between


Choose a suitable value of x0 with the value of its natural log.

def choose_x0_C (x) :
    '''
    (x0, C) = choose_x0_C (x)
    '''
    if (10 >= x >= 1) : pass
    else: exit (93)

    for p in range (len(Tx0)-2, -1, -1):
        if (x >= Tx0[p]) :
            if (x >= Tdp[p]) : return (Tx0[p+1], Tln_x0[p+1])
            return (Tx0[p], Tln_x0[p])
    exit(92)

Ready to calculate, for example,

x = Decimal('3.456789')
(x0, C) = choose_x0_C (x)
ln_x_ = ln_x (x, x0, C)
print ('ln({}) = {}'.format(x, ln_x_.quantize(Decimal('1e-50'))))
ln(3.456789) = 1.24034_01234_96758_02986_53847_82231_30004_00340_53893_89110 # displayed with 50 places of decimals.

Testing ln(x)

[edit | edit source]

Choose random numbers so that

Produce values

Calculate product

Produce value

If and

Verify that

# python code
import random

ln_10 = Tln_x0[-1]
fiftyPlacesOfDecimals = Decimal('1e-50')

def randomNumber() :
    s1 = str(random.getrandbits(getcontext().prec * 4))
    d1 = Decimal(s1[0] + '.' + s1[1:])
    if (d1 == 0) : d1 = randomNumber()
    while (d1 < 1) : d1 *= 10
    return d1

d1 = randomNumber()
d2 = randomNumber()

(x0, C) = choose_x0_C (d1)
ln_d1_ = ln_x (d1, x0, C)

(x0, C) = choose_x0_C (d2)
ln_d2_ = ln_x (d2, x0, C)

product = d1*d2
add_ln10 = 0
if (product > 10) :
    product /= 10
    add_ln10 += 1

(x0, C) = choose_x0_C (product)
ln_product_ = ln_x (product, x0, C)
if (add_ln10) : ln_product_ += ln_10

difference = (ln_product_ - ( ln_d1_ + ln_d2_ )).quantize(fiftyPlacesOfDecimals)

print ('''
d1          = {}
ln_d1_      = {}
d2          = {}
ln_d2_      = {}
ln_product_ = {}
'''.format(
d1,ln_d1_ ,
d2,ln_d2_ ,
ln_product_ ,
))

if difference :  print ('''
difference  = {} ****
'''.format(
difference,
))

For example: During testing, successive invocations of the above code produced:

d1          = 3.300463847393627263496303126765085976697315885228780009201595937
ln_d1_      = 1.1940630184110798505583266934968432937656468440595029
d2          = 4.727915623201914684885711302927600487326893972103794963997766615
ln_d2_      = 1.5534844337520634527664958773360448454701186698422347
ln_product_ = 2.7475474521631433033248225708328881392357655139017377
d1          = 6.56429212435850275252301147228535243835226966080458915176241218
ln_d1_      = 1.8816446762531860392218213681767770852191644273705970
d2          = 8.15468991518212749204100104755219361919087392341006662123706307
ln_d2_      = 2.0985932114606734087366302984138612677420896519457258
ln_product_ = 3.9802378877138594479584516665906383529612540793163228
[edit | edit source]
腮腺炎用什么药 电商属于什么行业 大姨妈有黑色血块是什么原因 东海龙王叫什么 金黄色葡萄球菌是什么菌
72岁属什么 乳腺结节是什么病 吃辣拉肚子是什么原因 梦见孩子拉粑粑是什么意思 膝关节咔咔响是什么原因
从容不迫是什么意思 精液的主要成分是什么 每天跑步对身体有什么好处 胡桃是什么 贴士是什么意思
上午九点半是什么时辰 多管闲事是什么意思 氢什么意思 黄牌车是什么意思 顺风顺水什么意思
礼拜是什么意思hcv9jop6ns3r.cn 2016年属什么生肖bjhyzcsm.com 癫疯病发作前兆有什么症状hcv8jop5ns0r.cn 第一次是什么感觉hcv8jop9ns7r.cn 什么情况下要打破伤风hanqikai.com
关节炎吃什么药520myf.com 指甲软是什么原因hcv8jop7ns5r.cn 周边是什么意思hcv8jop7ns7r.cn 微调是什么意思naasee.com 大姨妈不来是什么原因造成的hcv7jop7ns3r.cn
镜里观花是什么生肖dajiketang.com 姑爹是什么意思hcv7jop9ns8r.cn 送百合花代表什么意思cl108k.com 多吃火龙果有什么好处和坏处hcv7jop9ns1r.cn 刮痧板什么材质的好hcv8jop4ns6r.cn
爆单什么意思hcv8jop4ns0r.cn 宜入宅是什么意思hcv9jop6ns9r.cn 梦见别人给自己剪头发是什么意思kuyehao.com 人参和什么泡酒壮阳hcv8jop9ns4r.cn 桃代表什么生肖hcv7jop5ns2r.cn
百度